Gas Flow Calculator

– Base temperature
– Base pressure
– Pipeline efficiency, less than 1
– Gas gravity (air = 1)
– Compressibility factor
– Gas temperature
– Upstream elevation
– Downstream elevation
– Pipe segment length
– Pipe diameter
– Upstream pressure
– Downstream pressure

Results

– Standard cubic meters per second
– Thousand cubic meters per hour
– Million cubic meters per day
– Gas speed at pipeline start
– Gas speed at pipeline end
– Average pressure in the pipeline
– Gas volume Thousand cubic meters

Weymouth formula in SI units:

$$ Q_\text{base} = 3.7435 \cdot 10^{-3} \cdot \left(\frac{T_b}{P_b}\right) \cdot \left( \frac{P_1^2 - e^s \cdot P_2^2}{G \cdot T_f \cdot L_e \cdot Z} \right)^{0.5} \cdot D^{2.667} \cdot E $$

$$ L_e = \frac{L \cdot \left(e^s - 1\right)}{s} \qquad \qquad s = 0.0684 \cdot G \cdot \left(\frac{H_2 - H_1}{T_f \cdot Z}\right) $$

\( Q_\text{base} \)= Volume flow rate at base conditions, m³/d
\( T_b \)= Base temperature, K
\( P_b \)= Base pressure, kPa
\( P_1 \)= Upstream pressure, kPa
\( P_2 \)= Downstream pressure, kPa
\( E \)= Pipeline efficiency (dimensionless)
\( G \)= Gas gravity (air = 1)
\( Z \)= Gas compressibility factor (dimensionless)
\( T_f \)= Flowing gas temperature, K
\( L_e \)= Equivalent pipe length, km
\( L \)= Pipe segment length, km
\( D \)= Pipe inside diameter, mm
\( s \)= Elevation adjustment parameter
\( H_1 \)= Upstream elevation, m
\( H_2 \)= Downstream elevation, m

Gas velocity full expanded formula:

$$ v = \frac{Q}{A} = \frac{Q_\text{base} \times \frac{\rho_\text{base}}{\rho}}{\frac{\pi D^2}{4}} = \frac{4 \times Q_\text{base} \times \rho_\text{base}}{\pi D^2 \times \rho} = \frac{4 \times Q_\text{base} \times P_\text{base} \times Z \times T}{\pi D^2 \times P \times T_\text{base}} $$

Where:

\( v \)= Gas velocity, m/s
\( Q \)= Actual volumetric flow rate at flowing conditions, m³/s
\( Q_\text{base} \)= Volumetric flow rate at base conditions, m³/s
\( \rho \)= Gas density at flowing conditions, kg/m³
\( \rho_\text{base} \)= Gas density at base conditions, kg/m³
\( A \)= Pipe cross-sectional area, m²
\( P_\text{base} \)= Base pressure, kPa
\( P \)= Flowing pressure, kPa
\( T_\text{base} \)= Base temperature, K
\( T \)= Flowing temperature, K
\( Z \)= Gas compressibility factor (dimensionless)
\( D \)= Pipe inside diameter, m

Average pressure and gas volume inside the pipeline (base conditions):

$$ P_\text{avg} = \frac{2}{3} \times \frac{P_1^3 - P_2^3}{P_1^2 - P_2^2} \qquad V_\text{base} = \left( \frac{\pi D^2}{4} \right) \times L \times \frac{P_\text{avg} \times T_\text{base}}{P_\text{base} \times T \times Z} $$

Where:

\( P_\text{avg} \)= Average gas pressure in the pipeline, kPa
\( V_\text{base} \)= Gas volume at base conditions, m³
\( P_1 \)= Upstream pressure, kPa
\( P_2 \)= Downstream pressure, kPa
\( L \)= Pipe length, m
\( D \)= Pipe inside diameter, m
\( P_\text{base} \)= Base pressure, kPa
\( T_\text{base} \)= Base temperature, K
\( T \)= Flowing gas temperature, K
\( Z \)= Gas compressibility factor (dimensionless)
\( \pi \)= Pi constant (≈ 3.1416)