Gas Flow Calculator

Base temperature
Base pressure
Pipeline efficiency, less than 1
Gas gravity (air = 1)
Compressibility factor
Gas temperature
Upstream elevation
Downstream elevation
Pipe segment length
Pipe diameter
Upstream pressure
Downstream pressure

Results

Standard cubic meters per second
Thousand cubic meters per hour
Million cubic meters per day
Gas speed at pipeline start
Gas speed at pipeline end
Average pressure in the pipeline
Gas volume Thousand cubic meters

Weymouth Formula

$$ Q_\text{base} = 3.7435 \cdot 10^{-3} \cdot \left(\frac{T_b}{P_b}\right) \cdot \left( \frac{P_1^2 - e^s \cdot P_2^2}{G \cdot T_f \cdot L_e \cdot Z} \right)^{0.5} \cdot D^{2.667} \cdot E $$

$$ L_e = \frac{L \cdot \left(e^s - 1\right)}{s} \qquad \qquad s = 0.0684 \cdot G \cdot \left(\frac{H_2 - H_1}{T_f \cdot Z}\right) $$

\( Q_\text{base} \)= Volume flow rate at base conditions, m³/d
\( T_b \)= Base temperature, K
\( P_b \)= Base pressure, kPa
\( P_1 \)= Upstream pressure, kPa
\( P_2 \)= Downstream pressure, kPa
\( E \)= Pipeline efficiency (dimensionless)
\( G \)= Gas gravity (air = 1)
\( Z \)= Gas compressibility factor (dimensionless)
\( T_f \)= Flowing gas temperature, K
\( L_e \)= Equivalent pipe length, km
\( L \)= Pipe segment length, km
\( D \)= Pipe inside diameter, mm
\( s \)= Elevation adjustment parameter
\( H_1 \)= Upstream elevation, m
\( H_2 \)= Downstream elevation, m

Gas velocity full expanded formula:

$$ v = \frac{Q}{A} = \frac{Q_\text{base} \times \frac{\rho_\text{base}}{\rho}}{\frac{\pi D^2}{4}} = \frac{4 \times Q_\text{base} \times \rho_\text{base}}{\pi D^2 \times \rho} = \frac{4 \times Q_\text{base} \times P_\text{base} \times Z \times T}{\pi D^2 \times P \times T_\text{base}} $$

Where:

\( v \)= Gas velocity, m/s
\( Q \)= Actual volumetric flow rate at flowing conditions, m³/s
\( Q_\text{base} \)= Volumetric flow rate at base conditions, m³/s
\( \rho \)= Gas density at flowing conditions, kg/m³
\( \rho_\text{base} \)= Gas density at base conditions, kg/m³
\( A \)= Pipe cross-sectional area, m²
\( P_\text{base} \)= Base pressure, kPa
\( P \)= Flowing pressure, kPa
\( T_\text{base} \)= Base temperature, K
\( T \)= Flowing temperature, K
\( Z \)= Gas compressibility factor (dimensionless)
\( D \)= Pipe inside diameter, m

Average pressure and gas volume inside the pipeline (base conditions):

$$ P_\text{avg} = \frac{2}{3} \times \frac{P_1^3 - P_2^3}{P_1^2 - P_2^2} \qquad V_\text{base} = \left( \frac{\pi D^2}{4} \right) \times L \times \frac{P_\text{avg} \times T_\text{base}}{P_\text{base} \times T \times Z} $$

Where:

\( P_\text{avg} \)= Average gas pressure in the pipeline, kPa
\( V_\text{base} \)= Gas volume at base conditions, m³
\( P_1 \)= Upstream pressure, kPa
\( P_2 \)= Downstream pressure, kPa
\( L \)= Pipe length, m
\( D \)= Pipe inside diameter, m
\( P_\text{base} \)= Base pressure, kPa
\( T_\text{base} \)= Base temperature, K
\( T \)= Flowing gas temperature, K
\( Z \)= Gas compressibility factor (dimensionless)
\( \pi \)= Pi constant (≈ 3.1416)